
Math 436 midterm (practice)

Name:

This exam has 8 questions, for a total of 100 points.

Please answer each question in the space provided. No aids are permitted.

Question 1. (10 pts)

(a) State the definition of a topology on a set X.

Solution: Omitted. See Definition 2.1 in the textbook.

(b) Find a family of open subsets of the real line R whose intersection is not open.

Solution: Consider the family {An}n∈N+ , where An = (− 1
n
, 1
n
). We have

∞⋂
n=1

An = {0}

which is not open.



Question 2. (10 pts)

(a) State the definition of compactness.

Solution: Omitted. See Definition 3.2 in the textbook.

(b) Is it possible for a discrete space to be compact? Explain.

Solution: Yes, for example, consider the discrete space X = {a, b} of two
points. In this case, in fact, any open cover of X can only consist of finitely
many members, so automatically has a finite subcover.
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Question 3. (10 pts)
Let f : X → R be a continuous function on a topological space X. Suppose U is an open
set of X, is f(U) always open in R? Explain.

Solution: f(U) is not always open. For example, let X = [0, 1] and the constant
map f : [0, 1] → R by f(x) ≡ 0. Choose U = X = [0, 1] which is open in X, but
f(U) = {0} is not open in R.
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Question 4. (10 pts)
Suppose X is compact space and f : X → R is a continuous real valued function on X.
If f(x) > 0 for all x ∈ X, prove that there exists a number r > 0 such that f(x) > r for
all x ∈ X.

Solution: Since X is compact and f : X → R is continuous, f attains its minimum.
That is, there exists x0 ∈ X such that f(x0) = inf(f). By assumption, f(x0) > 0.
Let r = f(x0)/2. Then

f(x) ≥ f(x0) > f(x0)/2 = r

for all x ∈ X. This finishes the proof.
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Question 5. (15 pts)
Let (X, dX) and (Y, dY ) be two metric spaces. Suppose f : X → Y is a map such that
dY (f(x1), f(x2)) = dX(x1, x2) for all x1, x2 ∈ X.

(a) Prove that f is injective.

Solution: If x1 6= x2 in X, then

dX(x1, x2) > 0.

It follows that
dY (f(x1), f(x2)) = dX(x1, x2) > 0.

Therefore f(x1) 6= f(x2) in Y . This proves that f is injective.

(b) Prove that f is continuous.

Solution: Let β be the collection of all open balls in Y , that is,

β = {Br(y) | ∀r > 0 and ∀y ∈ Y }.

Note that β is a base of the topology of Y . It suffices to show that the inverse
image of any Br(y) is open.

Suppose x ∈ f−1(Br(y)), that is, dY (f(x), y) < r. We want to show that there
is an open ball Bε(x) centered at x of radius ε such that Bε(x) ⊂ f−1(Br(y)).
Since dY (f(x), y) < r, we can choose ε > 0 such that dY (f(x), y) < r− ε. Then
for any x′ ∈ Bε(x), we have

dY (f(x′), y) ≤ dY (f(x′), f(x)) + dY (f(x), y)

= dX(x′, x) + dY (f(x), y)

< ε+ (r − ε) = r

Therefore, x′ ∈ Bε(x) ⇒ f(x′) ∈ Br(y). In other words, Bε(x) ⊂ f−1(Br(y)).
We have shown that for any x ∈ f−1(Br(y)), there exists an open ball centered
at x which is contained in f−1(Br(y)). This proves that f−1(Br(y)) is open.
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Question 6. (10 pts)
Let X be a discrete topological space with at least two distinct points. Show that X is
not connected.

Solution: Choose a point x ∈ X. Define A = {x} and B = Ac = X − {x}. Since
X has at least two distinct points, both A and B are not empty. Since X is a
discrete space, both A and B are open. It follows that X is the union of two disjoint
nonempty open sets. Therefore X is not connected.
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Question 7. (15 pts)

(a) Let A and B be two connected subsets of R. If A ∩ B 6= ∅, show that A ∩ B is
connected.

(b) Find two connected subsets C and D of R2 such that C ∩D 6= ∅ and C ∩D is not
connected.

Solution:

(a) Since A and B are connected subsets of R, A and B are both intervals. By
assumption, A ∩B 6= ∅. Then A ∩B is also an interval, hence connected.

(b) Let C be the arc on the unit circle starting at angle π/3 and ending at 5π/3.

Let D be the arc on the unit circle starting at angle −2π/3 and ending at 2π/3.
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Question 8. (20 pts)
Let f : [0, 1]→ R be a continuous real-valued function on [0, 1]. The graph G(f) of f is
defined to be the following subset of R2:{

(x, f(x)) ∈ R2 | x ∈ [0, 1]
}
.

(a) Show that G(f) is compact.

Solution: Define a map h : [0, 1]→ R2 by

h(x) = (x, f(x)).

Let p1 : R2 → R be the projection to the first coordinate and p2 : R2 → R be the
projection to the second coordinate. Then p1 ◦ h(x) = x and p2 ◦ h(x) = f(x).
Both p1 ◦ h and p2 ◦ h are continuous. It follows that h is continuous, since R2

is the product space of R and R.

Since [0, 1] is compact and the continuous image of a compact space is compact,
it follows G(f) = h([0, 1]) is compact.

(b) Show that G(f) is homeomorphic to [0, 1].

Solution: G(f) is a subspace of R2, so G(f) is Hausdorff. Clearly, the map h
from part (a):

h : [0, 1]→ G(f)

is one-to-one, onto and continuous. By Theorem 3.7, h is a homeomorphism
from [0, 1] to G(f). In particular, this shows G(f) is homeomorphic to [0, 1].
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