Math 436 midterm (practice)

Name: _____

This exam has 8 questions, for a total of 100 points.

Please answer each question in the space provided. No aids are permitted.

Question 1. (10 pts)

(a) State the definition of a topology on a set X.

Solution: Omitted. See Definition 2.1 in the textbook.

(b) Find a family of open subsets of the real line \mathbb{R} whose intersection is not open.

Solution: Consider the family $\{A_n\}_{n \in \mathbb{N}_+}$, where $A_n = (-\frac{1}{n}, \frac{1}{n})$. We have $\bigcap_{n=1}^{\infty} A_n = \{0\}$

which is not open.

Question 2. (10 pts)

(a) State the definition of compactness.

Solution: Omitted. See Definition 3.2 in the textbook.

(b) Is it possible for a discrete space to be compact? Explain.

Solution: Yes, for example, consider the discrete space $X = \{a, b\}$ of two points. In this case, in fact, any open cover of X can only consist of finitely many members, so automatically has a finite subcover.

Question 3. (10 pts)

Let $f: X \to \mathbb{R}$ be a continuous function on a topological space X. Suppose U is an open set of X, is f(U) always open in \mathbb{R} ? Explain.

Solution: f(U) is not always open. For example, let X = [0, 1] and the constant map $f: [0, 1] \to \mathbb{R}$ by $f(x) \equiv 0$. Choose U = X = [0, 1] which is open in X, but $f(U) = \{0\}$ is not open in \mathbb{R} .

Question 4. (10 pts)

Suppose X is compact space and $f: X \to \mathbb{R}$ is a continuous real valued function on X. If f(x) > 0 for all $x \in X$, prove that there exists a number r > 0 such that f(x) > r for all $x \in X$.

Solution: Since X is compact and $f: X \to \mathbb{R}$ is continuous, f attains its minimum. That is, there exists $x_0 \in X$ such that $f(x_0) = \inf(f)$. By assumption, $f(x_0) > 0$. Let $r = f(x_0)/2$. Then

$$f(x) \ge f(x_0) > f(x_0)/2 = r$$

for all $x \in X$. This finishes the proof.

Question 5. (15 pts)

Let (X, d_X) and (Y, d_Y) be two metric spaces. Suppose $f: X \to Y$ is a map such that $d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2)$ for all $x_1, x_2 \in X$.

(a) Prove that f is injective.

Solution: If $x_1 \neq x_2$ in X, then

$$d_X(x_1, x_2) > 0.$$

It follows that

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2) > 0.$$

Therefore $f(x_1) \neq f(x_2)$ in Y. This proves that f is injective.

(b) Prove that f is continuous.

Solution: Let β be the collection of all open balls in Y, that is,

 $\beta = \{ B_r(y) \mid \forall r > 0 \text{ and } \forall y \in Y \}.$

Note that β is a base of the topology of Y. It suffices to show that the inverse image of any $B_r(y)$ is open.

Suppose $x \in f^{-1}(B_r(y))$, that is, $d_Y(f(x), y) < r$. We want to show that there is an open ball $B_{\varepsilon}(x)$ centered at x of radius ε such that $B_{\varepsilon}(x) \subset f^{-1}(B_r(y))$. Since $d_Y(f(x), y) < r$, we can choose $\varepsilon > 0$ such that $d_Y(f(x), y) < r - \varepsilon$. Then for any $x' \in B_{\varepsilon}(x)$, we have

$$d_Y(f(x'), y) \le d_Y(f(x'), f(x)) + d_Y(f(x), y)$$

= $d_X(x', x) + d_Y(f(x), y)$
< $\varepsilon + (r - \varepsilon) = r$

Therefore, $x' \in B_{\varepsilon}(x) \Rightarrow f(x') \in B_r(y)$. In other words, $B_{\varepsilon}(x) \subset f^{-1}(B_r(y))$. We have shown that for any $x \in f^{-1}(B_r(y))$, there exists an open ball centered at x which is contained in $f^{-1}(B_r(y))$. This proves that $f^{-1}(B_r(y))$ is open.

Question 6. (10 pts)

Let X be a discrete topological space with at least two distinct points. Show that X is not connected.

Solution: Choose a point $x \in X$. Define $A = \{x\}$ and $B = A^c = X - \{x\}$. Since X has at least two distinct points, both A and B are not empty. Since X is a discrete space, both A and B are open. It follows that X is the union of two disjoint nonempty open sets. Therefore X is not connected.

Question 7. (15 pts)

- (a) Let A and B be two connected subsets of \mathbb{R} . If $A \cap B \neq \emptyset$, show that $A \cap B$ is connected.
- (b) Find two connected subsets C and D of \mathbb{R}^2 such that $C \cap D \neq \emptyset$ and $C \cap D$ is not connected.

Solution:

- (a) Since A and B are connected subsets of \mathbb{R} , A and B are both intervals. By assumption, $A \cap B \neq \emptyset$. Then $A \cap B$ is also an interval, hence connected.
- (b) Let C be the arc on the unit circle starting at angle $\pi/3$ and ending at $5\pi/3$.

Let D be the arc on the unit circle starting at angle $-2\pi/3$ and ending at $2\pi/3$.

Question 8. (20 pts)

Let $f: [0,1] \to \mathbb{R}$ be a continuous real-valued function on [0,1]. The graph G(f) of f is defined to be the following subset of \mathbb{R}^2 :

$$\{(x, f(x)) \in \mathbb{R}^2 \mid x \in [0, 1]\}.$$

(a) Show that G(f) is compact.

Solution: Define a map $h: [0,1] \to \mathbb{R}^2$ by

$$h(x) = (x, f(x)).$$

Let $p_1: \mathbb{R}^2 \to \mathbb{R}$ be the projection to the first coordinate and $p_2: \mathbb{R}^2 \to \mathbb{R}$ be the projection to the second coordinate. Then $p_1 \circ h(x) = x$ and $p_2 \circ h(x) = f(x)$. Both $p_1 \circ h$ and $p_2 \circ h$ are continuous. It follows that h is continuous, since \mathbb{R}^2 is the product space of \mathbb{R} and \mathbb{R} .

Since [0, 1] is compact and the continuous image of a compact space is compact, it follows G(f) = h([0, 1]) is compact.

(b) Show that G(f) is homeomorphic to [0, 1].

Solution: G(f) is a subspace of \mathbb{R}^2 , so G(f) is Hausdorff. Clearly, the map h from part (a):

 $h \colon [0,1] \to G(f)$

is one-to-one, onto and continuous. By Theorem 3.7, h is a homeomorphism from [0, 1] to G(f). In particular, this shows G(f) is homeomorphic to [0, 1].