Math 436 midterm (practice)

Name:

\qquad

This exam has 8 questions, for a total of 100 points.
Please answer each question in the space provided. No aids are permitted. Question 1. (10 pts)
(a) State the definition of a topology on a set X.

Solution: Omitted. See Definition 2.1 in the textbook.
(b) Find a family of open subsets of the real line \mathbb{R} whose intersection is not open.

Solution: Consider the family $\left\{A_{n}\right\}_{n \in \mathbb{N}_{+}}$, where $A_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$. We have

$$
\bigcap_{n=1}^{\infty} A_{n}=\{0\}
$$

which is not open.

Question 2. (10 pts)

(a) State the definition of compactness.

Solution: Omitted. See Definition 3.2 in the textbook.
(b) Is it possible for a discrete space to be compact? Explain.

Solution: Yes, for example, consider the discrete space $X=\{a, b\}$ of two points. In this case, in fact, any open cover of X can only consist of finitely many members, so automatically has a finite subcover.

Question 3. (10 pts)
Let $f: X \rightarrow \mathbb{R}$ be a continuous function on a topological space X. Suppose U is an open set of X, is $f(U)$ always open in \mathbb{R} ? Explain.

Solution: $f(U)$ is not always open. For example, let $X=[0,1]$ and the constant $\operatorname{map} f:[0,1] \rightarrow \mathbb{R}$ by $f(x) \equiv 0$. Choose $U=X=[0,1]$ which is open in X, but $f(U)=\{0\}$ is not open in \mathbb{R}.

Question 4. (10 pts)
Suppose X is compact space and $f: X \rightarrow \mathbb{R}$ is a continuous real valued function on X. If $f(x)>0$ for all $x \in X$, prove that there exists a number $r>0$ such that $f(x)>r$ for all $x \in X$.

Solution: Since X is compact and $f: X \rightarrow \mathbb{R}$ is continuous, f attains its minimum. That is, there exists $x_{0} \in X$ such that $f\left(x_{0}\right)=\inf (f)$. By assumption, $f\left(x_{0}\right)>0$. Let $r=f\left(x_{0}\right) / 2$. Then

$$
f(x) \geq f\left(x_{0}\right)>f\left(x_{0}\right) / 2=r
$$

for all $x \in X$. This finishes the proof.

Question 5. (15 pts)
Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces. Suppose $f: X \rightarrow Y$ is a map such that $d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)$ for all $x_{1}, x_{2} \in X$.
(a) Prove that f is injective.

Solution: If $x_{1} \neq x_{2}$ in X, then

$$
d_{X}\left(x_{1}, x_{2}\right)>0 .
$$

It follows that

$$
d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=d_{X}\left(x_{1}, x_{2}\right)>0 .
$$

Therefore $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ in Y. This proves that f is injective.
(b) Prove that f is continuous.

Solution: Let β be the collection of all open balls in Y, that is,

$$
\beta=\left\{B_{r}(y) \mid \forall r>0 \text { and } \forall y \in Y\right\} .
$$

Note that β is a base of the topology of Y. It suffices to show that the inverse image of any $B_{r}(y)$ is open.
Suppose $x \in f^{-1}\left(B_{r}(y)\right)$, that is, $d_{Y}(f(x), y)<r$. We want to show that there is an open ball $B_{\varepsilon}(x)$ centered at x of radius ε such that $B_{\varepsilon}(x) \subset f^{-1}\left(B_{r}(y)\right)$. Since $d_{Y}(f(x), y)<r$, we can choose $\varepsilon>0$ such that $d_{Y}(f(x), y)<r-\varepsilon$. Then for any $x^{\prime} \in B_{\varepsilon}(x)$, we have

$$
\begin{aligned}
d_{Y}\left(f\left(x^{\prime}\right), y\right) & \leq d_{Y}\left(f\left(x^{\prime}\right), f(x)\right)+d_{Y}(f(x), y) \\
& =d_{X}\left(x^{\prime}, x\right)+d_{Y}(f(x), y) \\
& <\varepsilon+(r-\varepsilon)=r
\end{aligned}
$$

Therefore, $x^{\prime} \in B_{\varepsilon}(x) \Rightarrow f\left(x^{\prime}\right) \in B_{r}(y)$. In other words, $B_{\varepsilon}(x) \subset f^{-1}\left(B_{r}(y)\right)$. We have shown that for any $x \in f^{-1}\left(B_{r}(y)\right)$, there exists an open ball centered at x which is contained in $f^{-1}\left(B_{r}(y)\right)$. This proves that $f^{-1}\left(B_{r}(y)\right)$ is open.

Question 6. (10 pts)
Let X be a discrete topological space with at least two distinct points. Show that X is not connected.

Solution: Choose a point $x \in X$. Define $A=\{x\}$ and $B=A^{c}=X-\{x\}$. Since X has at least two distinct points, both A and B are not empty. Since X is a discrete space, both A and B are open. It follows that X is the union of two disjoint nonempty open sets. Therefore X is not connected.

Question 7. (15 pts)

(a) Let A and B be two connected subsets of \mathbb{R}. If $A \cap B \neq \emptyset$, show that $A \cap B$ is connected.
(b) Find two connected subsets C and D of \mathbb{R}^{2} such that $C \cap D \neq \emptyset$ and $C \cap D$ is not connected.

Solution:

(a) Since A and B are connected subsets of \mathbb{R}, A and B are both intervals. By assumption, $A \cap B \neq \emptyset$. Then $A \cap B$ is also an interval, hence connected.
(b) Let C be the arc on the unit circle starting at angle $\pi / 3$ and ending at $5 \pi / 3$.

Let D be the arc on the unit circle starting at angle $-2 \pi / 3$ and ending at $2 \pi / 3$.

Question 8. (20 pts)

Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous real-valued function on $[0,1]$. The graph $G(f)$ of f is defined to be the following subset of \mathbb{R}^{2} :

$$
\left\{(x, f(x)) \in \mathbb{R}^{2} \mid x \in[0,1]\right\} .
$$

(a) Show that $G(f)$ is compact.

Solution: Define a map $h:[0,1] \rightarrow \mathbb{R}^{2}$ by

$$
h(x)=(x, f(x)) .
$$

Let $p_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the projection to the first coordinate and $p_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the projection to the second coordinate. Then $p_{1} \circ h(x)=x$ and $p_{2} \circ h(x)=f(x)$. Both $p_{1} \circ h$ and $p_{2} \circ h$ are continuous. It follows that h is continuous, since \mathbb{R}^{2} is the product space of \mathbb{R} and \mathbb{R}.
Since $[0,1]$ is compact and the continuous image of a compact space is compact, it follows $G(f)=h([0,1])$ is compact.
(b) Show that $G(f)$ is homeomorphic to $[0,1]$.

Solution: $G(f)$ is a subspace of \mathbb{R}^{2}, so $G(f)$ is Hausdorff. Clearly, the map h from part (a):

$$
h:[0,1] \rightarrow G(f)
$$

is one-to-one, onto and continuous. By Theorem 3.7, h is a homeomorphism from $[0,1]$ to $G(f)$. In particular, this shows $G(f)$ is homeomorphic to $[0,1]$.

